Nitric Oxide Plays a Central Role in Water Stress-Induced Tanshinone Production in Salvia miltiorrhiza Hairy Roots.
نویسندگان
چکیده
Nitric oxide (NO), a well-known signaling molecule plays an important role in abiotic and biotic stress-induced production of plant secondary metabolites. In this study, roles of NO in water stress-induced tanshinone production in Salvia miltiorrhiza hairy roots were investigated. The results showed that accumulations of four tanshinone compounds in S. miltiorrhiza hairy roots were significantly stimulated by sodium nitroprusside (SNP, a NO donor) at 100 μM. Effects of SNP were just partially arrested by the mevalonate (MVA) pathway inhibitor (mevinolin), but were completely inhibited by the 2-C-methyl-d-erythritol-4-phosphate pathway (MEP) inhibitor (fosmidomycin). The increase of tanshinone accumulation and the up-regulation of HMGR and DXR expression by PEG and ABA treatments were partially inhibited by an inhibitor of NO biosynthesis (Nω-nitro-L-arginine methyl ester (L-NAME)) and a NO scavenger (2-(4-Carboxyphenyl)- 4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO)). Simultaneously, NO generation in the hairy roots was triggered by PEG and ABA, and the effects were also arrested by c-PTIO and L-NAME. These results indicated that NO signaling probably plays a central role in water stress-induced tanshinone production in S. miltiorrhiza hairy roots. SNP mainly stimulated the MEP pathway to increase tanshinone accumulation.
منابع مشابه
Molecular cloning and characterization of five SmGRAS genes associated with tanshinone biosynthesis in Salvia miltiorrhiza hairy roots
The gibberellin-responsive element binding factor (GRAS) family of proteins plays an important role in the transcriptional regulation of plant development and hormone signaling. To date, there are no reports on GRAS family proteins expressed in Salvia miltiorrhiza. In this study, 28 ESTs that contained the GRAS domain were identified from a S. miltiorrhiza cDNA library. Of these, full-length se...
متن کاملElicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis.
Biotic elicitors can be used to stimulate the production of secondary metabolites in plants. However, limited information is available on the effects of biotic elicitors from endophytic fungi on their host plant. Trichoderma atroviride D16 is an endophytic fungus isolated from the root of Salvia miltiorrhiza and previously reported to produce tanshinone I (T-I) and tanshinone IIA (T-IIA). Here,...
متن کاملInhibition of prostaglandin and nitric oxide production in lipopolysaccharide-treated RAW 264.7 cells by tanshinones from the roots of Salvia miltiorrhiza bunge.
This study examined the effects of tanshinone derivatives (tanshinone I, cryptotanshinone, 15,16-dihydrotanshinone I) on prostaglandin (PG) and nitric oxide (NO) metabolism in an attempt to establish their anti-inflammatory mechanisms and to present a scientific rationale for the use of Salvia miltiorrhiza (danshen) in inflammatory conditions. From lipopolysaccharide-treated RAW 264.7 cells, cy...
متن کاملMethyl jasmonate induction of tanshinone biosynthesis in Salvia miltiorrhiza hairy roots is mediated by JASMONATE ZIM-DOMAIN repressor proteins
Jasmonic acid (JA) is an important plant hormone involved in regulation of many aspects of plant growth and development including secondary metabolism and JASMONATE ZIM-DOMAIN (JAZ) proteins are key components in JA signal processes. In this study, two new JAZ genes named SmJAZ3 and SmJAZ9 were cloned from S. miltiorrhiza hairy roots and characterized. Expression profiles under methyl jasmonate...
متن کاملDifferent Roles of the Mevalonate and Methylerythritol Phosphate Pathways in Cell Growth and Tanshinone Production of Salvia miltiorrhiza Hairy Roots
Salvia miltiorrhiza has been widely used in the treatment of coronary heart disease. Tanshinones, a group of diterpenoids are the main active ingredients in S. miltiorrhiza. Two biosynthetic pathways were involved in tanshinone biosynthesis in plants: the mevalonate (MVA) pathway in the cytosol and the methylerythritol phosphate (MEP) pathway in the plastids. The 3-hydroxy-3-methylglutaryl coen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 20 5 شماره
صفحات -
تاریخ انتشار 2015